London’s spare gigawatt of power

Lucy Symons, Policy Manager at Open Energi, explains how flexible demand could help power a sustainable future for London.

Projected population explosions in cities across the globe present urban planners with huge challenges. Between now and 2050, the number of Londoners alone is expected to increase from 8.6 million to 11.3 million, putting enormous pressure on energy infrastructure and requiring radical new solutions.

To meet the energy needs of 11.3 million Londoners in 2050, the Mayor is planning for a slew of new power plants as part of the enormous £1.3 trillion infrastructure spend earmarked in the London Infrastructure Plan. But there are alternative approaches to our current supply-side model that could deliver better value; we need to be original and also look at the demand-side opportunity.

Indeed, by taking a smarter, no-build approach to managing energy demand, London could shave off an eighth of the power currently used to keep the city’s lights on.

New modelling by Open Energi demonstrates that London has a whole gigawatt of ‘spare’ capacity in its current demand for energy: in-built flexibility that can be cheaply unlocked without the need to lay a single brick.

The challenge of matching supply with demand

London, like all mega cities, is still mostly fossil fuelled and this needs to change, fast. However, the rapid growth of renewable energy generation presents its own challenges, with spikes in electricity production that are often out of sync with times of high energy demand in homes and businesses; on a given day in winter, London’s energy demand peaks at 8GW between 4 and 7pm.

By contrast, at the height of summer, solar power supply follows the natural pattern of insolation- peaking at noon and in sharp decline by the late afternoon. Whatever the season, intermittency will be a persistent problem for balancing the London grid.

At present the generation infrastructure serving London is built to meet maximum possible demand. But with demand exceeding 7 gigawatts only 21% of the time, this is a hugely inefficient use of resources.

As London’s population grows, predicting electricity demand will be increasingly difficult. The GLA has forecast four scenarios, with demand in 2050 deviating from the 2015 baseline by as much as 30%. And this presents a major planning challenge.

Energy production local to demand

One approach is to throw more capacity at the problem, building London’s energy infrastructure for a theoretical peak that could be as much as 60% too high by 2050. Indeed, the Greater London Authority is already planning for local generation to meet 25% of London’s needs by 2025. Estimated total capital costs for this range from £50 billion to £100 billion.

While local generation undoubtedly has an important role to play, building 119MW of co-generation units requires space, which is already at a premium in London, and continues our reliance on carbon-emitting gas in a city struggling with air pollution.

And the challenge of building out clean supply-side alternatives is clear when looking at GLA projections for wind power for 2050, which depend on technological developments that will allow for small, decentralised turbines to be running right across the capital.

Flexibility local to demand

It’s a well reported fact that electricity margins are tighter than they have been for years and, as populations continue to grow, the need to balance energy supply and demand in order to mitigate the risk of power blackouts will be more important than ever. Grid agility and flexibility has traditionally been provided by building new supply assets, but a smarter approach can be found on the demand-side.

Demand response technology is, at its core, an intelligent approach to energy that enables aggregators to harness flexibility in our demand for energy to build a smart, affordable and secure new energy economy. True DSR technology invisibly increases, decreases or shifts users’ electricity consumption, enabling businesses and consumers to save on total energy costs and reduce their carbon footprints while at the same time enabling National Grid to keep capacity margins in check.

Using over 5 years of data from working with businesses and National Grid to deliver demand response from all kinds of equipment –  including heating and ventilation systems, fridges and water pumps – right across the UK, Open Energi has modelled London’s industrial and commercial energy use to reveal an estimated 1040 MW of flexible demand that could be invisibly shifted to provide capacity when it is most needed.

This gigawatt of flexibility is electricity currently being put to use in powering London’s homes and workplaces between 4 and 7pm – with over half used in retail, commerce and light industry.

Harnessing this flexible power – a sizable slice of London’s 8GW winter peak demand – is not a technology problem. Right now, Open Energi’s Dynamic Demand technology is connected to 3000+ machines, invisibly and automatically reducing, increasing or delaying power demand, depending on available supply. Given that the bulk of London’s flexibility comes from non-domestic sites (large commercial buildings, retail and industry), using Dynamic Demand to unlock this 654 MW of flexibility could be the cleanest and most cost effective way to provide the power for London to operate, businesses to grow and its inhabitants to lead healthy lives.

As a direct alternative to building new power plants, Demand side response is an efficient way to optimise the existing generation infrastructure- shifting 1GW out of the peak would save the need to build a new mega power plant, equivalent to the size of Barking Power station.

From where we stand, powering London is a data-driven problem. The answer lies in decrypting patterns of flexible demand.

Analysis conducted by Remi Boulineau, remi.boulineau@openenergi.com

 

Recommended Posts

Leave a Comment