Here’s to the end of coal. But the revolution in energy is just beginning.

This article was originally published on 18 June at Open Access Government

David Hill, Commercial Director, Open Energi talks about the necessary infrastructure required to achieve the government’s ambitious net-zero emissions target and whether the hype matches reality


At precisely 3.12pm on Friday 31st May, the UK went two weeks without burning a single lump of coal for the first time since the Industrial Revolution. Social media channels buzzed with the #coalfreefortnight as commentators across the energy policy spectrum chose to mark the occasion with a tweet.

We’ve come a long way since the ‘dark satanic mills’ of William Blake’s iconic poem. It is right that we celebrate milestones like coal-free fortnight. But consider this. It has taken the UK 130 years finally to turn its back on coal. With the spectre of climate change looming larger and more tangible by the day, we must ask ourselves whether we are moving fast enough and smartly enough to deliver the revolution in energy delivery required to satisfy future demand while protecting the planet?

Renewable energy, comprising wind, solar, and biomass generation hit 42GW in the UK last year, accounting for 33% of total capacity. Meanwhile, analysis by Carbon Brief suggests up to 50% of the UK’s electricity could come from renewable energy by 2025. Progress at this level is encouraging. But integrating this level of renewables cost-effectively is challenging. Unlike traditional thermal sources of power, turning wind and solar on and off according to demand is simply not possible. Sceptics are also quick to raise the question of what to do when the sun doesn’t shine, and the wind doesn’t blow.

A smart solution to a complex challenge

When dealing with intermittent supply, such as wind and solar power, flexible capacity management becomes a fundamental need and challenge. The goal is to reach a point where we no longer require polluting power stations to ‘fill in the gaps’ when wind turbines and solar powers aren’t generating.

Achieving this requires energy storage to act as a buffer, easing pressure on demand when supply is too low, or saving valuable energy from renewables on a very windy, or sunny day where too much energy is being produced.

Most people associate energy storage with batteries. Battery storage systems allow energy consumers to store low cost, renewable energy and deliver it back at times of peak demand. For example, if you have a battery storage system integrated with a solar farm, it is possible to use photovoltaic (PV) power to charge up the battery for free during the day, drawing on that power at peak times, or selling that power back to the grid.

Applications for energy storage projects in the UK have grown from 2MW in 2012, to over 6.8GW in 2018, according to trade body RenewableUK. Little wonder, as batteries are already proving their value in helping organisations save money on power while doing their bit for the planet. But in our pursuit of low-cost clean power, arguably the cheapest and cleanest type of energy storage comes from the pockets of flexibility in our demand for energy.

Finding the hidden pockets of flexibility

Demand-side flexibility involves getting energy consumer to change their energy consumption patterns based on certain market signals. A lot of us practice a version of this already at home. For example, we switch lights off when we’re not in a room, or we use the washing machine at times when energy is cheaper.

The same applies at an industrial scale. Think about a supermarket fridge, an industrial furnace, or a water pump that feeds a local reservoir. The electricity consumption patterns of these types of devices are not necessarily time-critical. Provided they operate within certain parameters – such as room temperature or water levels – they can be flexible about when they use energy.

When electricity demand outstrips supply, instead of ramping up a fossil-fuelled power station, certain types of equipment can defer their electricity use temporarily. And if the wind blows and too much electricity is being supplied, then instead of paying wind farms to turn off we can ask equipment to use more now instead of later.

That sounds simple enough, but imagine trying to do this at scale, often with multiple assets on a single site, all with varying requirements. It would be virtually impossible to manage, and completely impossible to scale. Until now.

An automated approach to grid flexibility

Artificial intelligence and machine learning techniques are enabling us to keep an eye on multiple assets on a site, consider all the variables, from weather forecasting, through to pricing, and then make a series of intelligent, real-time decisions on how and when these assets should be using energy.

In the UK alone, we estimate there are 6 gigawatts of demand-side flexibility which can be shifted during the evening peak without affecting end users. Put into context, this is equivalent to roughly 10% of peak winter demand and larger than the expected output of the planned Hinkley Point C – the UK’s first new nuclear power station in generations.

Get low-cost, clean energy – with your car

Things become even more exciting when we add electric vehicles into the mix. Imagine if the charging points we used to charge our vehicles at home run on a system connected to technology which pinpoints the optimum time to charge the battery. Cars could help to absorb energy during periods of oversupply and to ease down demand during periods of undersupply. Your car would effectively become an energy storage unit that could help power your house with clean, low-cost energy.

Thanks to rapid advances in technology it is possible to envision a fully autonomous, self-balancing grid which delivers all the clean energy we need, incredibly cheaply. This is not decades away. Everything I have mentioned exists, is proven, and is scalable.

We’re forecasting up to 30GW of capacity in the UK by 2030, stemming from a mix of energy storage, combined heat and power units (CHPs), electrolysers and Electric Vehicles, through to more traditional demand-side response assets such as industrial pumps, boilers and chillers. Our technology already enables us to address all of these assets, unlocking potential cost-savings of up to £8 billion per year by 2030. When you begin to think about the opportunities this unlocks, it starts to put the long, slow demise of coal into perspective.

Recent Posts

Leave a Comment